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The numerical solution to the flow in the entrance region of a semiinfinite parallel 
channel was obtained for Reynolds numbers between zero and 2000. The governing 
equations, which are the steady-state, incompressible Navier-Stokes equations, were 
first quasilinearized. The resultant linear equations were then approximated by finite- 
difference formulas, which were judiciously selected in order for the coefficient matrix 
of the finite-difference equations to be diagonally dominant. 

This system of the difference equations was solved by a Gaussian elimination process 
instead of the usual relaxation techniques. A convergence to solution of the original 
nonlinear equations was reached in three to four repeated Gaussian elimination 
processes. The numerical results are in good agreement with other known numerical 
solutions. Generally, four point formulas were employed in the finite-difference approxi- 
mation, although some three point formulas were used near the boundary. The proposed 
numerical procedure was stable for all the Reynolds numbers considered. 

NOMENCLATURE 

a = one-half of the channel height 
c = x-directional transformation scale factor 

h, , h, = grid size in the -q- and y-directions, respectively 
L = dimensionless entrance length 

IV,, IV, = number of grids in the q- and y-directions, respectively 
p = dimensionless pressure 

Re = Reynolds number 
u = longitudinal velocity 

Kc = longitudinal velocity at the channel inlet 
q, N ue4 = longitudinal velocities at 25 neighboring mesh points 

U = longitudinal velocity in the current order of approximation 
u = transverse velocity 

* Present Address: Linde Division, Union Carbide Corp., tuffalo, New York 14150. 
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u0 - vZ4 = transverse velocities at 25 neighboring mesh points 
V = transverse velocity in the current order of approximation 
x = longitudinal coordinate 
y = transverse coordinate 
7 = transformed longitudinal coordinate 
v = kinematic viscosity 
p = density 
w = vorticitv 

a2 a2 
V2 = the Laplacian, ax2 + ay2 

INTRODUCTION 

In developing a possible new numerical scheme for solving the Navier-Stokes 
equations, the entrance flow problem has often been regarded as a standard problem 
for comparison. An analytical solution near the entrance is not possible. Various 
approximate solutions, mostly involving some form of Prandtl’s boundary-layer 
approximation, have been advanced. Schlichting [ 1, 21 has considered the entrance 
flow in two-dimension by series expansions near and far from the entrance. These 
solutions are then patched together at an intermediate location. This method was 
later applied to a circular tube by Atkinson and Goldstein [3]. Schlichting’s method 
was subsequently improved by inclusion of additional terms in the perturbation 
series in the independent studies by Roidt and Cess [4] and by Collins and 
Schowalter [5, 61. Recently, Van Dycke [7] improved Schlichting’s solution near 
the entrance by an upstream expansion whose first approximation is the leading 
edge solution for a semiinfinite plate, which had been calculated by Davis [8]. 
The displacement effect of the boundary layer in the inviscid core has been accounted 
for in the higher order approximations. 

Another group of analytical approximations deals with linearization of inertia 
terms. Sparrow et al. [9] who followed the linearization method of Langhaar [lo] 
solved both straight channel and circular duct flows. Although the complete 
viscous diffusion was retained, two rather critical assumptions were made: (a) the 
static pressure across each section is uniform, i.e., ap/+ = 0 and (b) the v au/+ 
term is negligible. Clearly, their solution is not applicable near the entrance. 
Lundgren et al. [I l] have employed the linearized equations of motion to predict 
the incremental pressure drop due to the entrance region for ducts of arbitrary 
cross-section. Savkar [12] applied a similar method to nonuniform flow in the 
inlet section of a straight channel. Recent work by Wiginton and Wendt [13] for 
flow in the entrance region of a duct, also falls in this category. 

There are equally numerous investigations of this problem by means of numerical 



552 MORIHARA AND T.-S. CHENG 

approaches. By and large the most frequently cited work was performed by Bodoia 
and Osterle [14, 151. The finite-difference method was applied to solve Prandtl’s 
boundary-layer equations. The forward-marching procedure, which is noniterative 
was used. This method is fast, but a large truncation error is unavoidable. Hornbeck 
[16] used essentially Bodoia and Osterle’s forward-marching, finite-difference 
method to solve the boundary-layer equations for the entrance pipe flow. 

Wang and Longwell [17, 181 were the first to solve the entrance flow problem 
employing the full Navier-Stokes equations. Partial differential equations were 
expressed in finite-difference form and a solution was attempted by an iterative 
relaxation technique. A straight channel flow with a uniform inlet velocity was 
considered in terms of stream function and vorticity. Unfortunately, they errone- 
ously specified zero vorticity at the entrance. As Van Dycke [7] pointed out, the 
vorticity at the inlet is not zero because of its upstream diffusion as soon as the 
flow hits the entrance wall. Wang et al., circumvented the problem by specifying 
that the flow is uniform at x = -co. Vrentas, Duda and Bargeron [19] solved 
Wang and Longwell’s second problem, but applied it to a pipe flow. 

Gillis and Brandt [20, 213 also solved the Navier-Stokes equations for the 
entrance flow in a flat channel. The governing equations were rewritten in terms 
of stream function and vorticity before finite-differencing. The finite-difference 
formulae were chosen in such a way that the resultant difference equations are 
linear at the nodal point in question, although the equations themselves are non- 
linear. Thus, the iterative relaxation procedure is feasible. In general, the largest 
drawback of any relaxation technique is that convergence depends critically on the 
value of the relaxation factor chosen. Brandt and Gillis’ method is no exception. 
The relaxation factor was chosen by trial and error. It not only differs for each 
Reynolds number, but it also varies as convergence is approached in order to 
achieve a more efficient computation. Because of this, it is extremely difficult to 
reproduce their solution. 

Friedman, Gillis and Liron [22] used Wang and Longwell’s method and applied 
it to flow in a pipe. They very cleverly approximated the vorticity at the entrance, 
which can be essentially credited to previous work done by Thorn [23]. Greenspan 
[24, 251 proposed a numerical technique called “donor-cell” technique to solve 
the two-dimensional, steadystate Navier-Stokes equations, which is also a relaxa- 
tion technique in terms of stream function and vorticity. Atkinson, Brocklebank, 
Card and Smith [26] treated a creeping flow, i.e., Re = 0, using the finite element 
method. 

Gosman et al. [27] also used an iterative relaxation method to solve the Navier- 
Stokes equations, but their approach is quite unique. Before finite-differencing, 
each term of the Navier-Stokes equations is expressed in terms of a stream function 
and is locally integrated at each nodal point. Nonlinear terms are linearized before 
integration by assuming that the convective velocity is constant in the neighborhood 
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of the nodal point in question. This introduces a large error, but the authors claim 
that this error should be accepted as being the price of reliable convergence. 

In the present investigation, the entrance flow in a channel between semi- 
infinite parallel plates is re-examined by the method of quasilinearization [28]. 
The proposed iterative scheme is in essence the generalization of Newton-Raphson- 
Kantorovich approximation techniques in function space. It involves, first, the 
elimination of the pressure terms from the Navier-Stokes equations followed by 
the quasilinearization of the nonlinear terms in the resultant momentum equation. 
FinaIly, a selected finite-difference formula is applied at each mesh point, keeping 
in mind the importance of diagonal dominance of the resultant coefficient matrix. 
The resultant algebraic equations are solved directly by Gaussian elimination. 

GOVERNING EQUATIONS 

The equations of motion for a steady-state, laminar, viscous, Newtonian fluid, 
in nondimensional form, are the continuity equation 

and the Navier-Stokes equations* 

where all the lengths and velocity components are normalized by the half channel 
height (a) and the mean velocity (U,), respectively, and pressure is normalized 
by pUm2. Re is the Reynolds number, 

As pointed out in the introduction, the vorticity distribution at the entrance is 
not known, hence, the velocity components u and v wilI be considered as the working 
dependent variables for convenience. Elimination of the pressure gradients in 
equations (2) and (3) gives 

vV% - uV% = & v2 (g - $) 

* All the symbols and notations are defined under Nomenclature. 
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A large stream-wise gradient is expected near the entrance. Therefore, an 
x-coordinate transformation advanced by Wang and Longwell [18] has also been 
made in this study. Let 

7j = 1 - (1 + cx)-’ (6) 

which transforms 0 < x < co into 0 < q < 1, where c is a constant whose 
value depends on the Reynolds number. Equally spaced mesh points in 7 would 
imply that relatively fine meshes are placed near the entrance region. 

The governing equations (5) and (1) after the x-coordinate transformation may 
be expressed as: 

22 15 10 14 2, 

FIG. 1. Coordinates in the entrance flow problem. 
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and 

(8) 

The appropriate boundary conditions are (See Fig. 1): 

(a) The no-slip condition is applicable at the wall, or u = u = 0 at y = 1, 
for all 7j. 

(b) The flow is symmetric about the center-line, or au/+ = 0 and u = 0 at 
y = 0, for all 7j. 

(c) The entrance velocity distribution is parallel and uniform, or u = 1, and 
v=Oat~=O,forallO<y<l. 

(d) The flow approaches the fully developed channel flow for down-stream from 
the entrance region, or u + 1.5(1 - y”) and u + 0 as 7 + 1, for all 0 < y < 1. 

QUASI-LINEARIZATION 

The method of quasilinearization has been successfully applied to many bound- 
ary-value problems arising from engineering and sciences [28]. It is, in essence, 
the generalization of Newton’s method, thus the proposed iterative scheme is 
expected to converge quadratically. Our numerical results seem to indicate this 
trend, though no attempt has been made to substantiate this statement. The 
nonlinear terms in the momentum equation take the form of a simple product. 
Let 0 and q be any pair of the dependent variables. The Taylor series expansion 
of this product about a pair of given functions 0 and CD gives 

0~ = 6&D + O(p, - CD) + @(0 - 0) + higher order terms. 

If this series is truncated at the first order, 199, may be approximated by 

eg, = BP, + ~8 - 0~. (9) 

Since 0 and 0 are given, the expression on the right side of (9) is linear in /3~. If 
(v - CD) and (0 - 0) represent two sequence of functions such that when @ and 0 
remain finite and 

IV-@l--t0 and le-eq+o, 

then the function CD@ converges to the nonlinear term $3, or 

l~e-a9~+0. 
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For example, the term z) Pu/+~ is quasilinearized to 

a2u a2u a2u a2u -- - 
v-=vqr+v&?2 

v ' aq (10) 

where U and V are assumed known. The quasilinearization of all the nonlinear 
terms in Eq. (7), it yields: 

Re[(g)‘(vg+ V$) +%(v$!+ V$-) + (ZIG+ v-f&)] 

-Re[($$‘(u$+ U-!$) +$$(u%+ U$-) 

+ ($+ u$)] 

- 2 [($)” 5 ($) + 

(11) 

A Gaussian elimination process was used to solve equations (8) and (11) numer- 
ically. The numerical solutions u and o after i-repeated Gaussian elimination 
processes are considered as the ith order iterative solutions; while, U and V are the 
(i - 1)th order solutions. If a convergence can be reached, i.e., 1 u - U I - 0 and 
1 v - V / --+ 0 for all x and y then u and v converge to the solution of Eq. (7) or 
the solution of the Navier-Stokes equations. 

FINITE-DIFFERENCE FORMULATION 

The finite-difference method was used to solve (8) and (11). If N, represents the 
number of grids in the T-direction and N, in the y-direction, h, = l/N, and 
h, = l/N, are the grid sizes in the q- and y-directions, respectively. At a mesh 
point, say point zero, in the interior of the flow field, 24 neighboring points may 
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be numbered as shown in Fig. 1. Then u0 represents velocity u at lattice point 0, 
and ui represents velocity u at point i. At point 0, differential terms in (8) and (11) 
may be approximated by quantities at these 25 points. In general, four point 
finite-difference formulae were used to approximate the partial derivatives, although 
sometimes three point formulae were used near the boundary. The finite difference 
formulae used are given in the Appendix. Since u and v were given on all the 
boundaries, two finite-difference equations (equivalent to continuity and momen- 
tum equations) of u0 and v0 were written for every mesh point interior to the region 
of interest. 

In the computation of u and v, the mesh points were numbered consecutively 
starting with the left upper corner down to the channel centerline, and sweeping 
across the flow field from left (entrance) to right. Then, the coefficient matrix of u 
and v is dense near the diagonal and banded. The arrays in the matrix can be stored 
in the compressed form [30], which conserves the computer storage space appre- 
ciably. The desired solution was obtained by Gaussian elimination. When the 
storage requirement is larger than the computer core capacity, the random-access, 
massive-storage disk-file [31] which is external to the central processing unit was 
used. In this application, the banded coefficient matrix was tridiagonally partitioned 
[29] and each submatrix so partitioned was stored in the massive-storage file. 
Three submatrices were taken out of the massive-file into the central processing 
unit, (at a time) thereby reducing the core requirement drastically. 

To maintain the banded nature of the coefficient matrix, interchange of rows 
during the elimination process was only permitted within submatrices. Efforts 
were made in the selection of the finite-difference formulae used at each point so 
that the resulting coefficient matrix was diagonally dominant at the outset, and 
consequently the roundoff error was minimized. This was achieved by selecting 
the appropriate finite-difference equation for each derivative so that all the partial 
derivatives gave the coefficients to u0 and v,, with the same sign. Then, the absolute 
value of the diagonal array would be maximum. 

To start the computation, an adequate first approximation of CJ and V at each 
nodal point must be specified. It is noted that for the Stokes flow (Re = 0), the 
Navier-Stokes equations are linear and, thus, no initial approximation is needed 
to solve for u and v. For flow at a small Reynolds number, the Stokes flow was 
used as an initial approximation. For the solutions at a higher Reynolds number, 
a slightly lower Reynolds number solution was used as an initial approximation. 
Except for the Stokes flow, after each cycle of the iteration, the convergence check 
was performed. The tolerance was set at 10-6, i.e., if / U - u 1 ( 1O-6 and 
1 V - v / < 10e6 were satisfied at all points, then u and L: were considered as a 
convergent solution. Otherwise, u and v became the new lJ and V and another 
cycle of iteration was carried out. 

58I/I1/4-7 
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NUMERICAL RESULTS 

The first case solved was the Stokes flow (Re = 0) where the governing equations 
are linear. This solution was used as the first approximation to the solution for 
Re = 1. The Reynolds number was gradually increased, and the solution to the 
neighboring smaller Reynolds number was always used as the first approximation 
to the solution for the new Reynolds numbers. The solutions to the Reynolds 
numbers of 0, 1, 5, 10, 20, 50, 100, 200, 500, 1000, and 2000 were obtained in this 
manner. In these cases, h, = 0.05 and h, = 0.01 were used. 

In order to improve the accuracy of the solution, the mesh-size was halved, i.e., 
h, = 0.025 and h, = 0.05, for some of the Reynolds numbers. Using the fine 
mesh points, solutions were obtained at Reynolds numbers of 0, 1,20,200 and 2000. 
Since the coarse mesh solutions were already available at these Reynolds numbers 
from the earlier runs, the first approximation to the fine mesh case was created 
from the coarse mesh solution of the same Reynolds number. Convergence was 
attained very quickly at all Reynolds numbers although more iterations were 
necessary at larger Reynolds numbers than at smaller Reynolds numbers. Table I 

TABLE I 

List of Entrance Flow Problems Studied 

Reynolds 
Number 

Mesh Size” 
No. of Iterations 

4 h, Cb Required 

0.05 0.1 2.5 1 
0.05 0.1 2.5 2 
0.05 0.1 2.0 3 
0.05 0.1 1.5 3 
0.05 0.1 1.5 3 
0.05 0.1 0.8 3 
0.05 0.1 0.4 4 
0.05 0.1 0.2 4 
0.05 0.1 0.1 4 
0.05 0.1 0.05 4 
0.05 0.1 0.025 5 
0.025 0.05 2.5 1 
0.025 0.05 2.5 3 
0.025 0.05 1.5 3 
0.025 0.05 0.2 4 
0.025 0.05 0.025 5 

ah,, = l/N,, and h, = l/N,. 
* C is the constant in the x-directional coordinate transformation, v = 1 - (1 + cx)-‘. 
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summarizes the cases considered and their Reynolds number, mesh-size, the 
x-direction transformation constant (c), and the number of iterations needed for 
convergence. The value of c has the effect of adjusting the longitudinal distribution 
of mesh points. The optimum value of c (Table I) was obtained for each Reynolds 
number by trial and error under the coarse-mesh approximation. The same value 
of c was used in the fine-mesh computations. 

Solutions were obtained in terms of u and v. These u and v values were used to 
generate other pertinent parameters such as the pressure gradient (+/ax, +/+), 
the pressure distribution ( p), and the vorticity distribution (w). 

VELOCITY PROFILE 

The velocity profiles for the cases Re = 0,20,200, and 2000 are shown in Fig. 2 
through 5. It is noted that for small x the velocity profiles include a local minimum 
on the axis y = 0 and symmetrically located maxima on either side of the centerline 
near the walls. The existence of these local maxima has been reported by Wang and 
Longwell [17, 181 and also by Gillis and Brandt [20, 211. This is in contradiction 
to the results obtained by the boundary-layer theory for the same physical problem. 
The question remaining is whether these bulges are due to truncation errors or 
whether they are part of the exact solution of the Navier-Stokes equations. 
Abarbanel et al. [31] posed the same question and solved a quarter-plane problem 
analytically when Re = 0, which would agree with that of the entrance flow 
problem for Re = 0 near the entrance. They have found the bulges in the velocity 
profile of the quarter-plane problem, indicating the strong possibility that these 
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X= 0.00 0.05 0.1 0.2 0.3 0.4 0.6 0.6 1.0 1.2 1.6 

FIG. 2. Flow development in the inlet region of a straight channel, Re = 0. 
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bulges are part of the exact solution. The physical explanation for this phenomenon 
may be that, due to the no-slip condition at the walls, the core flow must be 
accelerated in order to satisfy the continuity equation. However, the flow accelera- 
tion does not instantaneously reach the centerline, therefore, these bulges appear 
near the walls for small x. Qualitatively, the development of velocity profiles are 
found to be quite similar at all Reynolds numbers although the off-centerline 
maxima appear to be the greatest at Re = 200. 

FIG. 3. Flow development in the inlet region of a straight channel, Re = 20. 
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FIG. 4. Flow development in the inlet region of a straight channel, Re = 200. 
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FIG. 6. Comparison of centerline velocities. 



562 MORIHARA AND T.-S. CHENG 

Comparison of u and v values obtained by the present investigation and those 
of Gillis et al. [20] have been made [28]. Agreement ‘is excellent at x/Re > 0.05. 
For small X, agreement is within 2.5 percent. Figure 6 compares the centerline 
velocities computed by various researchers. At large Reynolds numbers, the present 
solution agrees well with Bodoia’s [14] solution of the boundary layer equations, 
particularly at small value of X. The present solution of Re = 2000 agrees with 
Schlichting’s with a maximum deviation of about 2.5 percent at very small x. 
Based on the boundary-layer theory, no local maxima were found in the velocity 
profile. In the present solution of Re = 2000, however, it shows definitely a sign 
of local maxima in the velocity profiles, although these maxima are diminishing 
with the increasing of Reynolds number. 

If the inlet length is defined as the distance from the entrance to the point where 
the centerline velocity reaches 99 percent of the fully developed velocity, the 
entrance length increases from 1.282 at Re = 0 to 171.6 at Re = 2000. Comparison 
of the inlet length of the present work and Gillis et al. shows that agreement is 
within one percent at Reynolds numbers of 20 and 200 (Table II). Table II also 
gives the inlet length computed by other researchers at the large Reynolds number 
limit. 

TABLE II 
Distance (L)” to parabolic regime 

Re L L/2 Re 

2000 
200 
20 

1 
0 

Present Work Gillis, et al** Present Work Gillis, et al 

171.6 0.0429 
18.06 18.23 0.0452 0.0456 
2.237 2.26 0.0559 0.0565 
1.302 0.0651 
1.282 

At Large Re Limit 

Researcher L/2Re 

Schlichting 0.0400 
Hwang and Fan 0.0422 
Present Workb 0.0423 
Bodoia and Osterle 0.0440 
Gillis, et alb 0.0442 
Roidt and Cess 0.0454 

Q L is the distance x at which the velocity u at the centerline reaches 99 percent of the fully 
developed value, i.e. u (x, 0) = 0.99 U(c0, 0). 

b Values have been extrapolated. 
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PRESSURE GRADIENT AND VORTICITY DISTRIBUTION 

The stream-wise pressure gradient is very large near the entrance. The normal 
pressure gradient, @/a~, is also far from zero near the wall for small x. These 
characteristics are more pronounced for the smaller Reynolds number cases. 
A typical normalized pressure gradient is plotted versus x/Re in Fig. 7 when 

0 .Ol .02 .03 .04 .05 .06 .07 .08 

X/h 

FIG. 7. The streamwise pressure gradient at various y values, Re = 20. 

Re = 20.0. It approaches asymptotically to unity as x/Re becomes large. An 
anomalous adverse pressure gradient is found near the entrance as shown in 
Fig. 7. The pressure gradient along the wall is always negative and -(@/ax) Re/6 
is very large near the leading edge. There is a delta shaped adverse pressure gradient 
zone which extends into the entrance region. This delta region penetrates deeper 
into the entrance at smaller Reynolds number, and it is practically nonexisting 
for the case of Re = 2000. Physically, this is interpreted as a phenomenum of the 
up-stream influence of the viscous flow. 

Near the entrance where the fluid parcels first meet the wall, viscous friction 
decelerates the fluid parcels to zero velocity at the wall. Consequently high shear 
stress and pressure gradient have been developed near the wall. The fluid parcels 
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near the centerline are on one hand accelerated to meet the downstream boundary 
condition and on the other hand maintained at a reasonably uniform velocity 
distribution near the inlet. One could probably question the validity of whether 
a uniform velocity can be maintained at the entrance under the steady state 
condition [31]. Nevertheless, in order to meet this boundary condition, an adverse 
pressure zone is developed to preclude a drastic acceleration of fluid parcels so that 
the uniform velocity condition can be maintained at the entrance. As a result of 
this boundary condition, the fluid parcels near the wall must be accelerated at a 
much higher rate, (Fig. 7) which causes the formation of bulges in the velocity 
profile. At higher Reynolds numbers, however, the presence of the wall is not felt 
immediately by fluid parcels near the centerline. Instead, they are accelerated 
gradually by the viscous displacement effect due to the presence of walls. The 
development of bulges in the velocity profile and the existence of an adverse 
pressure gradient zone are thus much less pronounced at higher Reynolds numbers. 

From the numerical solution of u and v, the vorticity distribution may be cal- 
culated. Figures 8 and 9 depict the equivorticity lines and, the distribution 
of vorticity in the entrance region for the case of Re = 200. The vorticity at the 
inlet is nonzero for moderate and small Reynolds numbers. At Re = 2000, 
however, the vorticity at the inlet is very close to zero everywhere. It seems then 
that the formulation of the entrance flow problem in terms of stream function 
and vorticity (Wang and Longwell’s first problem, for example) is justified only for 
large Reynolds numbers. 

il.8 .- 

0.7 .- 
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0.5 -. 

0.4.. 
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0.1.- 

0.0 
-3 -2 -1 0 1 2 3 4 5 6 

VORTICITY, w 

FIG. 8. Equivorticity lines in the entrance region of a straight channel, Re = 200 and Re = 
2ooo. 
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FIG. 9. Vorticity vs. the y-axis at various x/Re values, Re = 200 and 2000. 

ERROR ANALYSIS 

There are three possible types of error sources involved in this numerical scheme. 
They are the tolerance set for the termination of quasilinear iterations, the roundoff 
errors, and the truncation errors in the finite-difference approximation. 

Tolerance of the iteration was set at IO-“. That is, the quasilinear iterations were 
terminated if the solutions of u and v between two consecutive iterations were 1O-6 
or less for all the mesh points. Since the direct elimination method was used to 
solve the governing algebraic system for u and v, the final solutions for u and u 
would consist of the accumulated roundoff errors. To verify the validity of these 
solutions, an error analysis test was made after the termination of the iterations. 
It was, in essence, back substitutions. Original continuity and momentum Eqs. (7) 
and (8) were written in the finite-difference form for each interior point. These 
equations give u0 and v0 in terms of known neighboring values of U’S and v’s 
(ul - uz4 and v1 - v&. Though the expressions for u. and v,, are fairly complicated 
and nonlinear, evaluation of u. and v0 by means of the given neighboring values 
of U’S and V’S is straightforward and practically free from roundoff error. Sub- 
stitution of the numerical solutions into these equations yields a new set of u and v 
values. These u and v values were compared with the solutions. If the differences 
in U’S and v’s are small for all the mesh points, then the numerical solutions are 
considered as the solutions of the Navier-Stokes equations under the finite- 
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difference approximations. For Re = 0, the differences for both U’S and U’S are 
generally less than 10-6. The differences are somewhat higher near the wall and are 
of the order of 10W5. Near the singularity (the leading edge of the wall), the differ- 
ences are the highest, as one might expect; they are 8.1 x 1O-5 in u and 3.7 x 1O-4 
in v. A similar situation prevails for other Reynolds numbers although the differ- 
ences in U’S and v’s are generally higher for Re = 2000. For all practical purposes, 
therefore, the errors due to roundoff and iteration have been maintained below 
the truncation errors stemming from the finite-difference approximation. 

The finite-difference formulae are mostly the four point approximations whose 
truncation error is of the order of hU2 or hn2 times the higher order derivative. For 
the case of 20 x 40 mesh, the truncation error is estimated to be of the order 
of 10-4 - 10e5. In some cases, however, three point formulas had to be used at 
mesh points adjacent to the wall in an effort to maintain diagonal dominance of 
the coefficient matrix, otherwise the roundoff error would have been unacceptably 
high. It is probable, therefore, that an error near the wall may be of the order of 
10-3 N 10-d. 

Because of the fact that the momentum equation is very complicated and 
nonlinear, an accurate assessment of the overall error is practically impossible. 
But the convergence test and the truncation error information should give the 
order of magnitude of the overall error. In the convergence test, four-point for- 
mulae were used at mesh points where three point formulae were used in the 
actual computation of u and 0. Small errors in these regions indicate that an 
occasional use of three-point formulae did not seem to alter the overall accuracy 
appreciably. 

Judging from the above, the round-off error and the error due to quasi-lineariza- 
tion of the governing equations are secondary to the truncation error, except 
near the singularity. It may be concluded that the overall error appears to be of 
the order of 1O-4 except near the singularity where the error may be an order of 
magnitude higher. 

An independent study of a two-dimensional heat conduction problem for 
which the thermal conductivity is assumed to be a function of temperature was 
calculated by the method of quasilinearization. In this case, the exact analytical 
solution is known through the use of the Kirchhoff transformation. Comparison 
of the numerical solutions with the exact analytic solution was made. The identical 
method was employed, i.e., the quasi-linearized equations were solved by finite- 
difference approximation. The same mesh size and the same four point finite- 
difference approximation were used as in the present investigation, and singularities 
at two of the four corners were introduced. The numerical solution differed from 
the exact one by as much as IO-4 in the interior, by slightly more than 10d4 near 
the boundary and by 5 x 1O-4 near the singularities. 
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DISCUSSION OF RESULTS 

The numerical integration of Navier-Stokes equations for the entrance flow 
problem has been carried out by means of a combined quasi-linearization and 
finite-difference method. In the past, the numerical integration of Navier-Stokes 
equations had been accomplished only by one form of relaxation technique or 
another. The choice of a relaxation factor is usually very critical for the system of 
equations to converge. Although Gosman et al.‘s scheme [27] reduces the danger 
of divergence, the penalty is a large truncation error. Quasilinearization of the 
Navier-Stokes equations followed by a direct elimination process have successfully 
eliminated the guessing of a relaxation factor. In terms of the transformed variables, 
(20 x 40) mesh points were used to cover half of the flow field. One major draw- 
back is that a large computer core space is required. Otherwise, accessory memory 
space such as magnetic tapes or disks must be used extensively. Consequently, 
the computer time required will be doubled or more. 

In the development of a numerical scheme, one is never absolutely sure of the 
accuracy of the numerical solution obtained. At times, convergence in an iterative 
procedure may not mean that the solution is convergent to the solution of the 
differential equations. To compare the numerical results with some known analytic 
solutions is one possibility, but on the other hand, an analytic solution of the 
Navier-Stokes equations is simply nonexisting, except for a few special cases for 
which the nonlinearity vanishes due to the embedded nature of the problem. An 
alternative is that every researcher in this area solve a standard problem and 
compare their results against each other’s. As reviewed in the introduction, the 
entrance flow problem is probably one of the most frequently examined problems 
by fluid dynamists or numerical analysts. All of the studies are intended to suggest 
a method or methods toward a valid solution of the boundary-layer equations or 
Navier-Stokes equations, analytically or numerically. In this spirit, the entrance 
flow problem has been re-examined in this study for Reynolds number range 
from 0 to 2000. 

The computed results are in good agreement with solutions reported earlier by 
Gillis et al. [20]. Further detailed comparison may be found in Morihara [29]. 
Two bulges in the velocity profile are again observed for all the Reynolds numbers. 
Although at Reynolds number of 2000, the bulges almost disappear and the velocity 
profile approaches that of the boundary-layer approximation. It seems that these 
velocity overshoots are a realistic part of the solution. They result from the condi- 
tion that the velocity distribution at the inlet must be uniform. In order to maintain 
this condition, actually an adverse pressure gradient develops in a small region 
on the centerliner near the entrance. Fluid parcels near the centerline are not 
accelerated immediately, whereas the fluid parcels next to the wall are forced to be 
stationary as soon as they enter the inlet region. To satisfy the continuity equation, 
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velocity overshoots are thus formed. Indeed, this is in agreement with the fact that 
the pressure gradient distribution near the wall is much larger than the pressure 
gradient near the centerline. 

APPENDIX. FINITE-DIFFERENCE FORMULA 

For each mesh point, point zero, in the interior of the flow field, 24 neighboring 
points are numbered and defined as shown in Fig. 1. To set up the system of 
difference equations at each interior point, the partial derivatives of the governing 
equations are approximated by the appropriate finite-difference formulae. At points 
adjacent to the boundary, the applicable boundary conditions will be incorporated. 
Since u and v are considered as the working dependent variables, application of 
the boundary conditions is straightforward. Normally four or more points are used 
in the finite-difference formulae, and the truncation errors may be shown to be 
of the order of hU2 or hn2 times higher order derivatives or higher. The finite- 
difference formulae used in this study are given below along with the schematic 
sketch of the points used in the neighborhood of point zero. 

Re Ve * = Re V,C,(3u, + 2u, - 62~ + urr) 
3 

3, = Re V,C,(3u, - 3243 

Re V$ = Re V&,(-224, + u2 + uq) 

-Re Ud2e = -Re U&,--2v,, + v1 + v~) 
%I2 

-Re Ue -% = -Re U,,C,(3v, + 2v, - 6v, + Q) 
arl 

>, = -Re U,C,(3v, - 3~) 

-Re Ug = -Re U&J-2v, i- v2 -I- v4) 

I 2 I 

I : 2 1 

I=: I 

P 

t = I 

t .: r 1 

I - : .r 

P 

(Al) 

(A2-a) 

(A2-b) 

(A31 

(A41 

(A5-a) 

(A5-b) 

G46) 
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-2e a a’ 
-isyqJ ( 1 

Cd(-6uo + 3u, - 4u, -t- 3u, -I- 12u, 

+ 2u, + 2u, - 6u, - 6u, - 2u,, 

+ %3 + u13) 

C,(9u, - ml, - 1 su, + 624, + 624, 

+ 36u, - 12u, +- 42.4, - 12248 + 3u, 

+ 3uMJ - 6u13 - 6~14 + 24, + 2~20 

+ u21) 

0 = cc(-9u, -t- 9u, + 18u, - 6u, + 6u, 

- 18u,g - 3u, + 32&j) 

-+ C,(-3% + u.2 + 3% - 242) 

6de z: - = Chl4VO + vi + 213) 2 

2fg = Ci(3v, + 20, - 60, + VII) 

C,(3v, - 3u3 

Cj(6v, - 12v, - 3v, -j- 45 - 321, 

+ 6v, - 2v, - 2v, -I- 6v, -I- 221, 

- v13 - %3 

WI 
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W 3) 



570 MORIHARA AND T.-S. CHENG 

= C,(-3uo + 624, - 224 - zig) 

G’=C(-3co+6t) 
ay 1 

2 -22~ 4 -v ) 10 

3, = G(3uo + 2% - 604 + ~12) 

where: 

4 d=z, 

d3rl f=,,,, 

c, = d” 
h,2 ’ 

-d2 
Cd = 3h,h,a ’ 

c+, 
II 

C=E 
h h,2 ’ 

d 
‘i = 3h,h,2 ’ 

t-t-o-~ (A14-a) 

w (A14-b) 

(Al5-a) 

i 

(Al5-b) 

d2rl e=dx,, 

G=&, 

c, = r 
hv2 ’ 

C=?C 9 hv3 ’ 

f Ciz3h,,’ 

d 
CF6h, 

Some terms have two finite-difference approximations. One of the two was 
chosen depending on the location of the mesh point in question as seen in the 
Table III. 
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TABLE III 

Selection of Finite-Difference Formula 

Finite-Difference Equation Number 

Mesh Points A2 A5 A8 Al2 Al4 Al5 

i) leading edge, adjacent to wall b b b b b b 

ii) leading edge, excluding i) and v) b b a b b a 

iii) adjacent to wall, excluding i) (I a b a a b 

iv) all points, excluding i), ii), iii), v) & vi) a a a a a a 

v) leading edge, centerline b a 

vi) centerline, excluding v) a a 
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